CS335: An Overview of
Compilation

Swarnendu Biswas

Semester 2019-2020-11
CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

A Bit of History

* In the early 1950s, most programming was with assembly language
* Low programmer productivity
* Cost of software development far exceeded cost of hardware

* In 1954, John Backus proposed a program that translated high level
expressions into native machine code for IBM 704 mainframe

* Fortran | project (1954-1957): The first compiler was released

Impact of Fortran

* Fortran | compiler was the first optimizing compiler

* Programmers were initially reluctant to use a high-level programming
language for fear of lack of performance

* The Fortran compiler has had a huge impact on the field of
programming languages and computer science

* Many advances in compilers were motivated by the need to generate efficient
Fortran code

* Modern compilers preserve the basic structure of the Fortran | compiler!

Executing Programs

* Programming languages are an abstraction for describing
computations
* For e.g., control flow constructs and data abstraction

* Advantages of high-level programming language abstractions

* Improved productivity, fast prototyping, improved readability, maintainability, and
debugging

e The abstraction needs to be transferred to machine-executable form
to be executed

What is a Compiler?

* A compiler is a system software that translates a program in a source
language to an equivalent program in a target language

source , Compiler , target
program program

* Typical “source” languages might be C, C++, or Java
* The “target” language is usually the instruction set of some processor

Important Features of a Compiler

* In addition to translation, compilers provide feedback to the user
* Point out errors and potential mistakes in the program

Source-Source Translators

* Produce a target program in another programming language rather
than the assembly language of some computer

* The output program require further translation before they can be
executed

* Many research compilers produce C programs

More Examples of a Compiler

* A typesetting program that produces PostScript can be considered a
compiler

* Typesetting LaTeX to generate PDF is compilation

Interpreter

* An interpreter takes as input an executable specification and
produces as output the result of executing the specification

source
—p

program Interpreter —— output

input —_—

 Scripting languages are often interpreted
* For e.g., Perl, Python, and Bash

Compilers vs Interpreters

Compilers

* Translates the whole program at
once

* Memory requirement during
compilation is more

* Error reports are congregated

e On an error, compilers try to fix the
error and proceed past

* Examples: C, C++, and Java

Interpreters

* Executes the program one line at a
time
* Compilation and execution happens
at the same time

* Memory requirement is less, since
there is less state to maintain

* Error reports are per line
* Stops translation on an error

* Examples: Python, Ruby, PHP

Hybrid Translation Schemes

* Translation process for a few languages include both compilation and
interpretation (e.g., Lisp)

* Java is compiled from source code into a form called bytecode
(.class files)

e Java virtual machines (JVMs) start execution by interpreting the
bytecode

* JVMs usually also include a just-in-time compiler that compiles
frequently-used bytecode sequences into native code

* JIT compilation happens at runtime

Compilation Flow in Java with Hotspot JVM

e e e e e e s |

I I

.Java javac __, -class :: Template :
program compiler bytecode | interpreter :
I I

input —': :

! Cl+C2 !

I 1 Hotspot |

: compiler WM

Language Processing

* Language processing is an important component of programming

* A large number of systems software and application programs require
structured input
e Command line interface in Operating Systems
* Query language processing in Databases
* Type setting systems like Latex

A Language-Processing System

skeletal source program

J

preprocessor

source program

ﬂ absolute machine code

)

ﬂ . library, relocatable
target assembly program Imker/loader object files

assembler IZ> relocatable machine code

CS 335 Swarnendu Biswas

Development Toolchain

Programmer . Source program . Assembly code
. Editor g Compiler Assembler

S

Programmer Machine

fixes bugs code
Controlled

execution with Resolved machine

debug information code
Debugger § Loader Linker

Executable machine
code

CS 335 Swarnendu Biswas

Goals of a Compiler

* A compiler must preserve the meaning of the program being
compiled

* Proving a compiler correct is a challenging problem and an active area of
research

* A compiler must improve the input program in some discernible way
* Compilation time and space required must be reasonable
* The engineering effort in building a compiler should be manageable

Applications of a Compiler

DO I =1, N
DO J =1, M

A(I7J+1) = A(IrJ) + B
ENDDO

ENDDO

Applications of a Compiler

* Perform loop transformations to help with parallelization

DOI =1, N DO J =1, M
DO J =1, M DO I =1, N
A(T,J+1) = A(I,]) + B A(TI,J+1) = A(I,]) + B
ENDDO ENDDO

Programming Language vs Natural Language

* Natural languages
* Interpretation of words or phrases evolve over time

|II

* Fore.g., “awful” and “bachelor”

* Allow ambiguous interpretations

* “l saw someone on the hill with a telescope.” or “l went to the bank.”
» “Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo”

* Programming languages have well-defined structures and
interpretations, and disallow ambiguity

https://en.wikipedia.org/wiki/Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo

https://en.wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffalo_buffalo

Constructing a Compiler

* A compiler is one of the most intricate software systems
* General-purpose compilers often involve more than a hundred thousand LoC

* Very practical demonstration of integration of theory and engineering

Finite and push-down automata Lexical and syntax analysis
Greedy algorithms Register allocation
Fixed-point algorithms Dataflow analysis

e Other practical issues such as concurrency and synchronization,
optimization for memory hierarchy

Structure of a Compiler

Compiler Structure

* A compiler interfaces with both the source language and the target

architecture

source

intermediate

program

~ target

|
|
| representation
|
|
|

|
|
|
Front End > Back End .
|
|

Compiler

program

Compiler Structure

|

| intermediate
| representation
|

|

|

|

|

|

Sonree Front End > Back End |
|

|

program

~ target
program

Compiler
* Front end is responsible for understanding the input program in a source
language

* Back end is responsible for translating the input program to the target
architecture

Intermediate Representation

* An intermediate representation (IR) is a data structure to encode
information about the input program

* For e.g., graphs, three address code

 Different IRs may be used during different phases of compilation

int f(int a, int b) { define 132 @f(i32 %a, i32 %b) {
return a + 2xb; ; <label>:0
} LLVM IR %1l = mul 132 2, %b
| > %2 = add 132 %a, %1
. - t 132 %2
int main() { } ret 1
return (10, 20);
} define i32 @main() {
; <label>:0

%1 = call i32 @f(i32 10, 132 20)
ret 132 %1

Advantages of Two-Phased Compiler
Structure

e Simplifies the process of writing or retargeting a compiler

source
language 1

> Front End 1 Back End 1

intermediate

/ representation

source
language n

> Front End n Back End n

Three Phased View of a Compiler

* IR makes it possible to add more phases to compilation

source
program

~ target
program

Compiler

* Optimizer is an IR—IR transformer that tries to improve the IR
program in some way

Three Phased View of a Compiler

* Front end consists of two or three passes that handle the details of
the input source-language program

* Optimization phase contains passes to perform different
optimizations
* The IR is generated by the front end
* The number and purpose of these passes vary across compiler
implementations

* The back end passes lower the IR representation closer to the target
machine’s instruction set

Visualizing the LLVM Compiler System

. Front-end

C++ —» Clang

Go —p Gollvin

'/

Middle-end

LLVM IR —»

LLVM optimizer

xX86

Back—ery/

» LIVM IR —»

Rust — rustc b4

\
\
\

Toy - -+ toyc

LLVM static compiler

NS

PowerPC

https://blog.gopheracademy.com/advent-2018/llvm-ir-and-go/

CS 335

Swarnendu Biswas

https://blog.gopheracademy.com/advent-2018/llvm-ir-and-go/

Implementation Choices

Monolithic structure Multipass structure

2?2 2?7

Implementation Choices

Monolithic structure Multipass structure
e Can potentially be more * Less complex and easier to
efficient, but is less flexible debug

e Can incur compile time
performance penalties

Phases in a Compiler

Translation in a Compiler

* Direct translation from a high-level language to machine code is
difficult

 Mismatch in the abstraction level between source code and machine code
* Abstract data types and variables vs memory locations and registers
e Control flow constructs vs jump and returns

* Some languages are farther from machine code than others
* For example, languages supporting object-oriented paradigm

Translation in a Compiler

* Translate in small steps, where each step handles a reasonably
simple, logical, and well defined task

* Design a series of IRs to encode information across steps
* IR should be amenable to program manipulation of various kinds (for e.g.,
type checking, optimization, and code generation)

* IR becomes more machine specific and less language specific as
translation proceeds

Different Phases in a Compiler

source program target program

4 i)

lexical analyzer code generator
, symbol table ,

syntax analyzer error handler code optimizer

4 i)

: intermediate code
semantic analyzer | >

generator

CS 335 Swarnendu Biswas

Front End

* First step in translation is to compare the input program structure
with the language definition

* Requires a formal definition of the language, in the form of regular
expressions and context-free grammar

* Two separate passes in the front end, often called the scanner and the
parser, determine whether or not the input code is a valid program defined
by the grammar

Lexical Analysis

* Reads characters in the source program and groups them into a
stream of tokens (or words)
» Tokens represent a syntactic category
e Character sequence forming a token is called a lexeme
* Tokens can be augmented with the lexical value

position = 1nitial + rate * 60

Lexical Analysis

* Reads characters in the source program and groups them into a
stream of tokens (or words)
» Tokens represent a syntactic category
e Character sequence forming a token is called a lexeme
* Tokens can be augmented with the lexical value

position = 1nitial + rate * 60

 Tokens are ID, “=", ID, “+”, ID, “*” CONSTANT

Challenges in Lexical Analysis

* |dentify word separators

* The language must define rules for breaking a sentence into a sequence of
words

* Normally white spaces and punctuations are word separators in languages

* |n programming languages, a character from a different class may also be
treated as a word separator

Syntax Analysis

* Once words are formed, the next logical step is to understand the
structure of the sentence

* This is called syntax analysis or parsing

e Syntax analysis imposes a hierarchical structure on the token stream

position = 1nitial + rate * 60 / \

o VAN
2 /\

Semantic Analysis

* Once the sentence is constructed, we need to interpret the meaning
of the sentence

X saw someone on the hill with a telescope

JJ said JJ left JJ’s assighment at home

* This is a very challenging task for a compiler
* Programming languages define very strict rules to avoid ambiguities
* For e.g., scope of variable named JJ

Semantic Analysis

* Compiler performs other checks like type checking

position = initial + “rate” * 60

CS 335 Swarnendu Biswas

Intermediate Representation

* Once all checks pass, the front end generates an IR form of the code
* IR is a program for an abstract machine

id, = id, + id, * 60 t, = inttofloat(60)
1 2 3 1 i
t, = 1d; * t,

1d, = t,

Code Optimization

e Attempts to improve the IR code according to some metric
* For e.g., reduce the execution time, code size, or resource usage

* “Optimizing” compilers spend a significant amount of compilation
time in this phase

* Most optimizations consist of an analysis and a transformation
* Analysis determines where the compiler can safely and profitably apply the
technique

* Data flow analysis tries to statically trace the flow of values at run-time
* Dependence analysis tries to estimate the possible values of array subscript expressions

Code Optimization

* Some common optimizations

 Common sub-expression elimination, copy propagation, dead code
elimination, loop invariant code motion, strength reduction, constant folding

t, = inttofloat(60) = t; = id; * 60.0
t, = id; * t, id, = t, + id,
t; = t, + 1d,

id, = t;

Challenges with Code Optimization

* All strategies may not work for all applications

* Compiler may need to adapt its strategies to fit specific programs

* Choice and order of optimizations
e Parameters that control decisions & transformations

* Active research on “autotuning” or “adaptive runtime”
* Compiler writer cannot predict a single answer for all possible programs
* Use learning, models, or search to find good strategies

Code Generation

* Back end traverses the IR code and emits code for the target machine

* First stage is instruction selection
* Translate IR operations into target machine instructions
* Can take advantage of the feature set of the target machine
* Assumes infinite number of registers via virtual registers

t, = 1d; * 60.0 :> MOVF 1d; -> r,

id, = t; + 1d, MULF #60.0, r, -> 1,
MOVF 1id, -> r,
ADDF r,, r, -> r,
MOVF r, -> 1id,

Code Generation

* Register allocation
* Decide which values should occupy the limited set of architectural registers

* Instruction scheduling

* Reorder instructions to maximize utilization of hardware resources and
minimize cycles

Instruction Scheduling

LOAD @ADDR,, @0FF, -> R,
ADD R,, R, -> R,

LOAD @ADDR,, @OFF, -> R,
MUL R,, R, -> R,

LOAD @ADDR;, @OFF; -> R,
MUL R,, R, -> R,

STORE R, -> @ADDR,, @QOFF,

Instruction Scheduling

LOAD @ADDR,, @0FF, -> R, LOAD @ADDR,, @0FF, -> R,
ADD R,, R, -> R, LOAD @ADDR,, @OFF, -> R,
LOAD @ADDR,, @OFF, -> R, LOAD @ADDR;, @OFF, -> R,
MUL R,, R, -> R, ADD R,, R, -> R,
LOAD @ADDR;, @OFF; -> R, MUL R,, R, -> R,
MUL R,, R, -> R, MUL R, Ry -> R,

STORE R, -> @ADDR,, @OFF, STORE R, -> ®ADDR,, QOFF,

References

* A. Aho et al. Compilers: Principles, Techniques, and Tools, 2"? edition.
» K. Cooper and L. Torczon. Engineering a Compiler, 2"¢ edition.

* A. Karkare. CS 335: Compiler Design, https://www.cse.iitk.ac.in/~karkare/Courses/cs335.

CS 335 Swarnendu Biswas

https://www.cse.iitk.ac.in/~karkare/Courses/cs335

